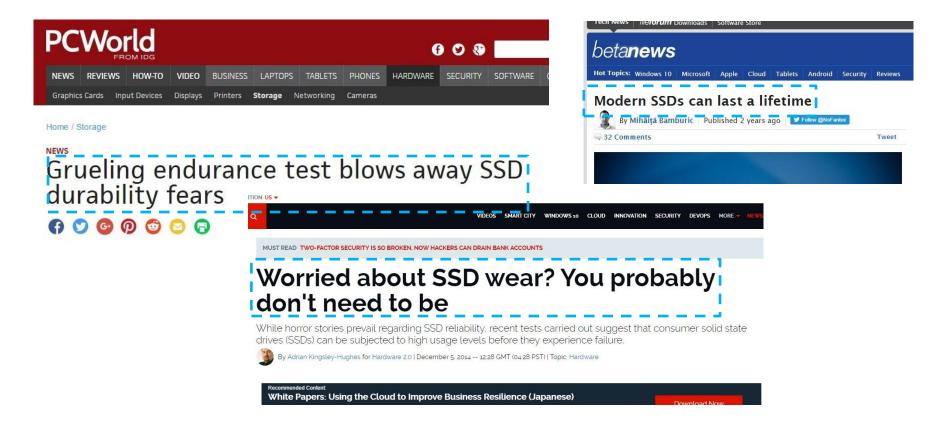
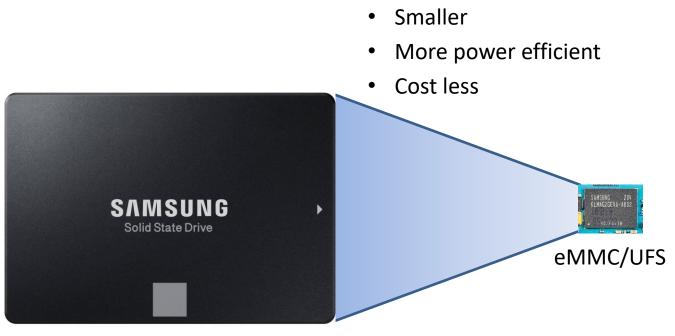


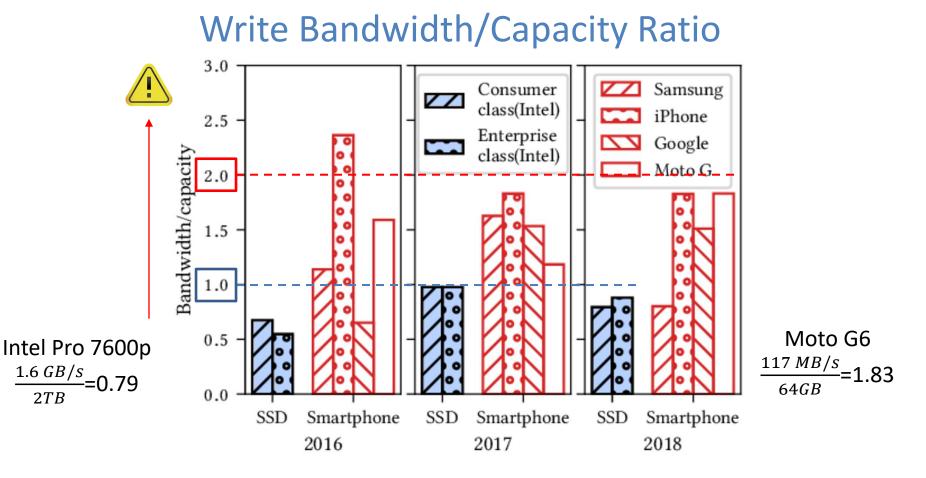
Apps Can Quickly Destroy Your Mobile's Flash: Why They Don't, and How to Keep It That Way

Tao Zhang¹, Aviad Zuck², Donald E. Porter¹, Dan Tsafrir^{2,3}


THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL


³ **m**ware[®]

SSD Lifespan Nowadays Considered Non-issue

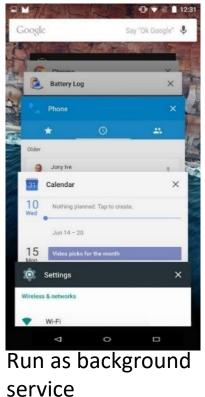

- Flash can only endure a limited write quota
 - E.g., 3K rewrites of the entire SSD

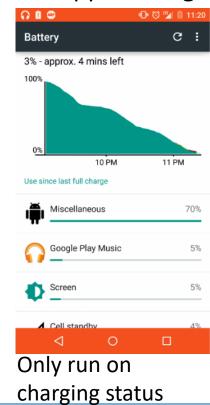
Mobile Flash Storage: Compact SSD (with Compromises)

- Lower capacity
- Limited hardware
- Worse performance (eMMC)
- Less sophisticated firmware

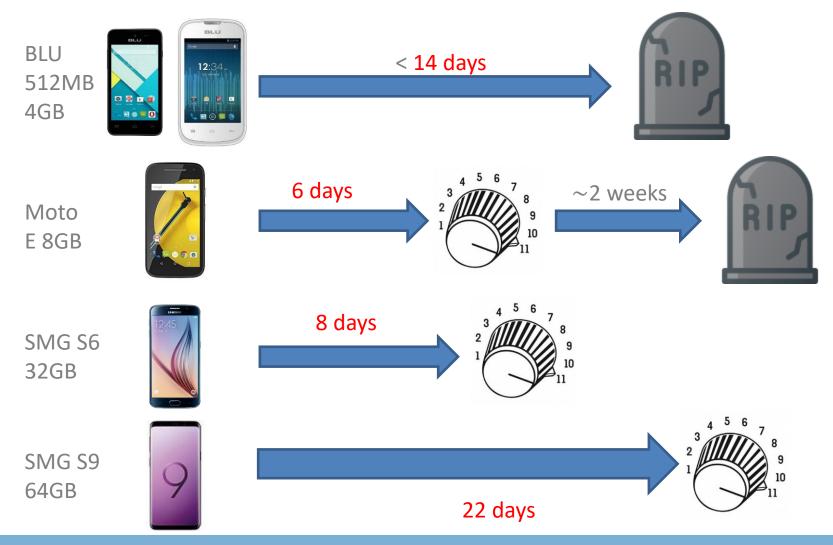
- Smartphones skew toward dangerous bandwidth/capacity ratio
- Easy to issue lifetime's worth of writes

- Conventional wisdom: SSD wear-out not a problem
- Our analysis: There is cause for concern
 - 1. Dangerous bandwidth/capacity skew
 - 2. Less sophisticated devices
 - 3. App stores are trusted (too much)
 - 4. Users perceive mobile phones as safer (strict permissions, app stores)
- How bad could it be?
 - Let's try attacking mobile devices and measure lifespan!


Threat Model


- Mobile storage device (eMMC/UFS)
- Long-term warranty (e.g., 2Y)
- Supports synchronous IO
- Code snippet can access storage space by default
 - E.g., app with no special privileges

Wear-out Attack


- Prototype Android app with less than 1K lines of code
- No special permission needed
- Stealthily rewrite small files in app's storage space

Ψ		ଡ଼♥ℝ₿	11:15		
← Apps		۹	:		
OWNLOADED	RUNNING		AL		
Device memory					
System			RAM		
Apps		218MB of F	RAM		
Free			RAM		
App RAM usage					
Settings 1 process	and 0 services	4	2MB		
Android 1 process	System and 1 service	1. 472:4	9MB 7:24		
	alcomm.qcrilm and 1 service	n sgtunnel 1.7 472:4			
Motorola 1 process	aOTA and 10 services	_	6MB 9:48		
\bigtriangledown	0				
Pause workload on					
screen	li+				
JUCEII	11 L		_		

Phone Wear-out Experiment Results

Phones can be worn out in weeks!

• Mobile flash storage can be worn out quickly

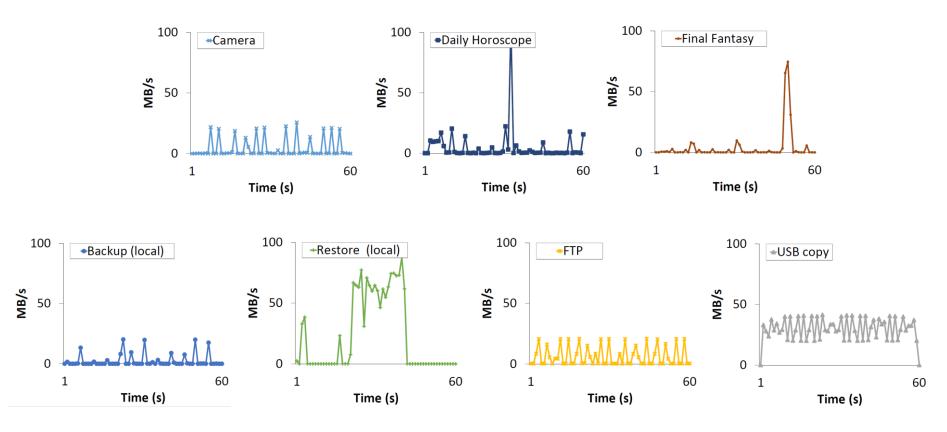
• Mobile flash storage can be worn-out quickly

Why my phone is not dead (yet)?

Mobile App I/O Characterization

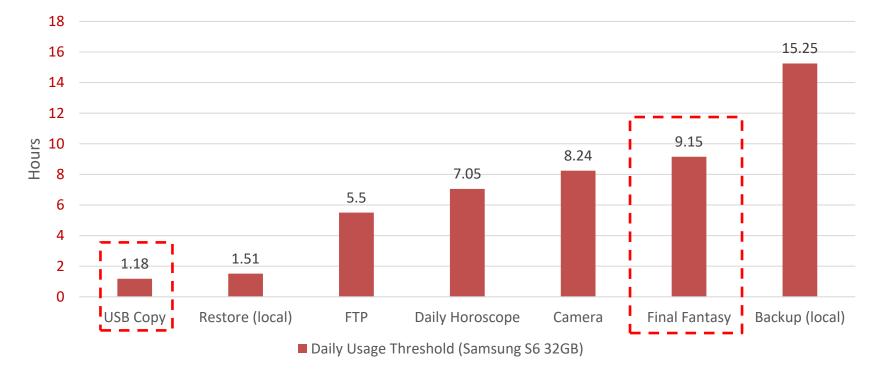
- Platform: Samsung S6 32GB
 - $-\sim$ 88 TiB estimated lifetime write
 - 2Y warranty
- Two usage scenarios
 - 27 preloaded apps (camera, etc.) + top 150 free apps from Google Play Store*

- I/O-intensive workloads (FTP server, file copies, backup/restore)



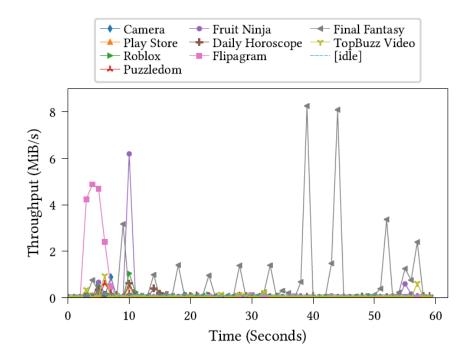
Initial conclusions

- Most apps don't consume dangerous levels of write bandwidth
 - Most apps are not used most of the time
- Minority of apps are write-intensive
 - Lets look more closely at these "troublemakers"



Write-heavy Apps/Workloads

• Apps issue bursts of I/O


Can apps prematurely wear-out your phone?

- Reasonable app usage won't shorten device lifetime
 - Most write-heavy usage scenarios not long-term/frequently used
- Extreme use cases CAN prematurely wear-out phone (but not likely)

App Background I/O Characterization

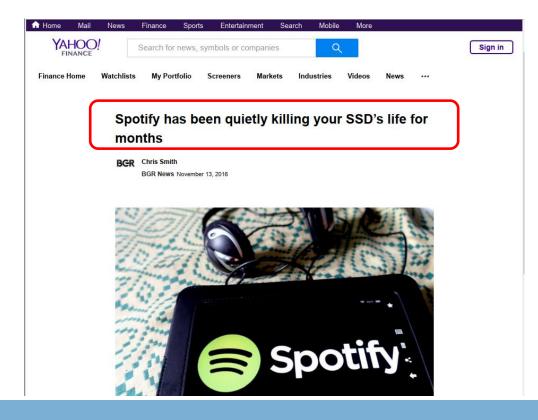
Арр	Avg (MB/s)	
camera	0.02	ר
dailyhoroscope	0.04	
finalfantasy	0.67	
flipagram	0.29	
fruitninja	0.14	1
playstore	0.02	-<1
puzzledom	0.04	
roblox	0.04	
topbuzz-video	0.05	
idle	0.11	

Most apps cause little to no background I/O activities

MB/s

- Mobile flash storage can be worn-out quickly
 - Wear-out level evaluation
 - Smartphone storage wear-out experiments
- Mobile flash storage is safe with benign apps under reasonable usage
 - Reasonable app usage won't shorten device lifetime
 - Most apps cause little to no background I/O activities
 - Extreme use cases CAN prematurely wear-out your phone

More details in the paper.


- Mobile flash storage can be worn-out quickly
 - Wear-out level evaluation
 - Smartphone storage wear-out experiments
- Mobile flash storage is safe with benign apps under reasonable usage
 - Reasonable length of app usage is not long enough to shorten lifetime
 - Most apps cause little to no background I/O activities
 - Extreme use cases CAN prematurely wear-out your phone

Should we stop worrying about mobile flash lifespan?

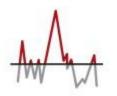
OS Wear Management *is* Necessary

- Potential wear-out attack
- User may playing Final Fantasy for more than 9 hours daily
- Buggy app can unintentionally kill your phone as well

OS-level Wear Management

- Monitor and measure app-specific I/O behavior
 - Extend diskstats accordingly

- Per-app I/O rate limiting mechanism
 - cgroups v2 (Linux kernel 4.5 or newer)
 - Prototype implemented on Samsung S6 (Android 6.0.1) & Linux kernel 3.10.101.



Let the user choose!

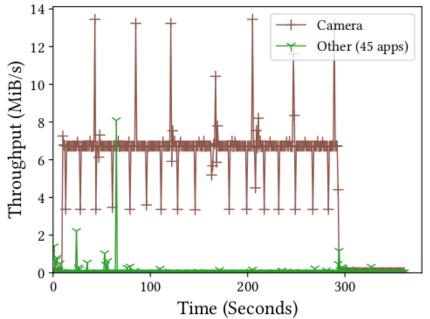
- Prompt user whether to rate-limit suspicious app

Wear Management Policy

- Apps tend to issue bursty I/O
 - Allocate write (lifetime) slack quota to accommodate bursts

- Denial-of-Service attack on slack quota
 - Quota & threshold with finer granularity (daily)

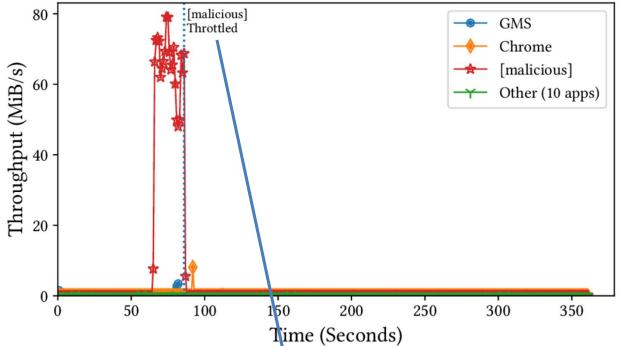
- Foreground vs. background
 - Stricter quota & threshold on background apps (i.e., hourly)


More details in the paper

Google Hangouts

Other (49 apps)

Evaluation (Write-intensive Apps)



- (s) (s)
- Video shooting with camera (foreground)
- Bursts are permitted
- ~1.2 hours daily usage without intervention
- Google Hangouts receiving messages every 5s (background)
- ~300 KiB/s background workload

Benign apps run with no/minimum disruption

Evaluation (Wear-out attack)

Malicious wear-out attack in background

~80MiB/s maximum throughput

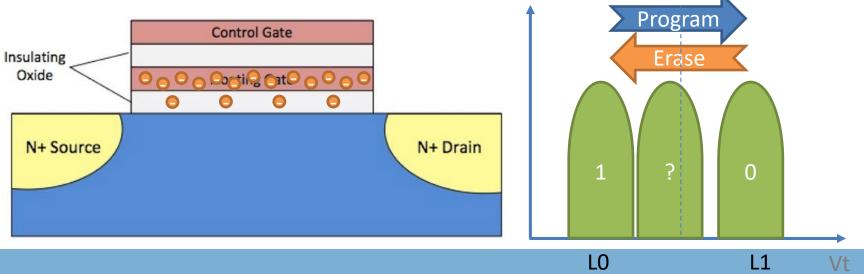
Phone protection kicks in within 30s

©SC∧R

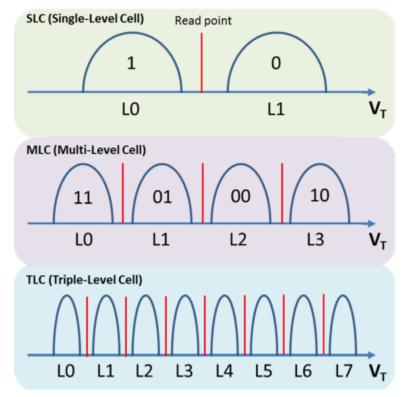
Conclusion

- Mobile flash storage is still in danger
 - App with no special perm can doom storage in days/weeks
- App I/O characterization
 - Mobile flash storage is safe with benign apps under reasonable usage
 - Extreme usage scenarios can still prematurely exhaust storage lifespan
- Prototype of flash wear management mechanism
 - Effectively identify & rate-limit malicious apps
 - Little to no disturbance on benign apps and user experience
- Flash storage lifespan as depletable resource needs to be managed
 - Embedded devices with flash storage (IoT devices, medical devices, etc.)

Aviad Zuck aviadzuc@cs.Technion.ac.il



Backup slides

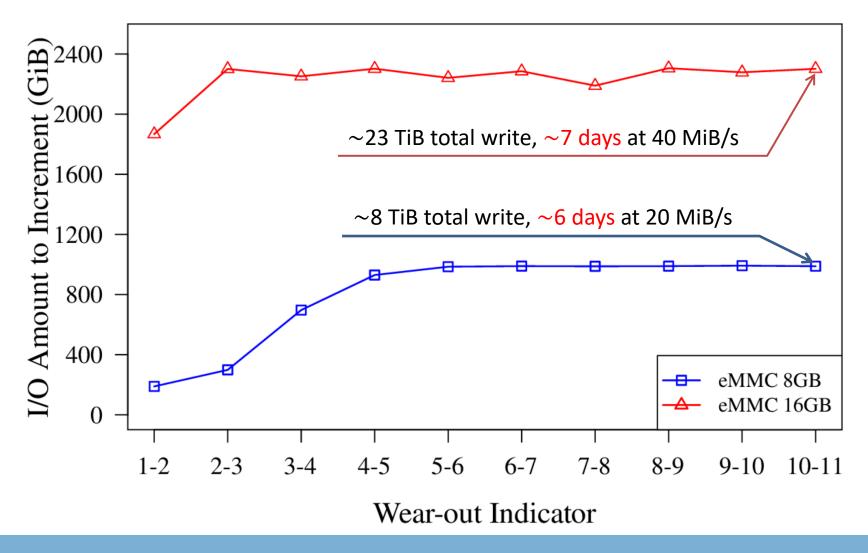

Flash Internals

- Floating gate (flash cell)
 - Program (inject electrons)
 - Erase (eject electrons)
 - Electrons trapped in insulating oxide (worn out)

SLC ⇒ MLC ⇒ TLC: Evolution or Degeneration?

- Higher density (lower cost)
- Poorer performance
- Easier to wear-out
 - SLC: up to 100K P/E cycles
 - MLC: 3K ~ 10K P/E cycles
 - TLC: < 1000 P/E cycles</p>
- "...global shipment share of clientgrade SSDs using TLC Flash will exceed 75% by in 2017." [DRAMeXchange]

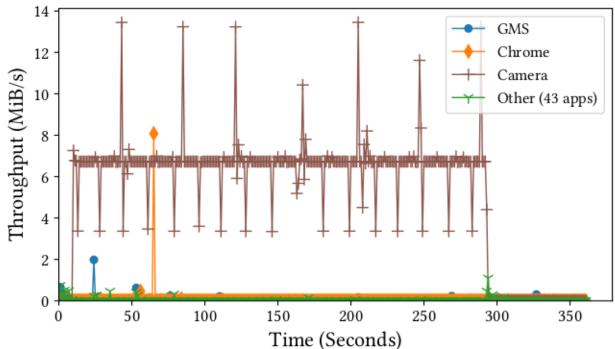
(Source: EE Times)


How to Evaluate Wear-out Level

- Built-in Wear-out Indicators
 - eMMC [JESD84-B51] Extended CSD register
 - UFS [JESD220C] Device Health Descriptor
 - Value from 1 to 11

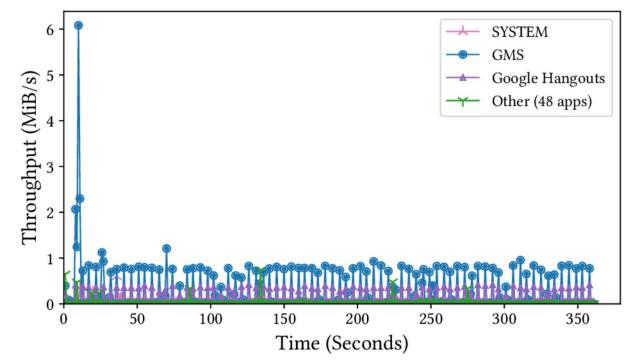
Value	1	2	3	4	5	6	7	8	9	10	11
Life Consumed	0% ~ 10%	10% ~ 20%	20% ~ 30%	30% ~ 40%	40% ~ 50%	50% ~ 60%	60% ~ 70%	70% ~ 80%	80% ~ 90%	90% ~ 100%	Worn out

eMMC Flash Chips Can Wear-out in Days


Can apps prematurely wear-out your phone?

Арр	Avg. Throughput	Daily Usage Threshold
USB Copy	29.74 MiB/s	1.18 hours
Restore (local)	23.29 MiB/s	1.51 hours
FTP	6.39 MiB/s	5.50 hours
Daily Horoscope	4.98 MiB/s	7.05 hours
Camera	4.26 MiB/s	8.24 hours
Final Fantasy	3.84 MiB/s	9.15 hours
Backup (local)	2.30 MiB/s	15.25 hours

- Most write-heavy usage scenarios are neither long-term operations nor frequently used
- Reasonable length of app usage is not long enough to shorten lifetime



- Video shooting with ~7MiB/s write activity
- ~1.2 hours daily usage without intervention
- May exceed , for short time

Evaluation (Background)

- Google Hangouts receiving messages (per 5s) in background
- ~300 KiB/s background workload

Benign apps run with no/minimum disruption